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            On the other hand, multi-layer  metallization  has  been  interesting  to  researchers 
because  of  its  capability  of  producing phase formation, which promotes good ohmic 
contacts. Thus, the contact resistance for the Ti/Al bi-layer metallization was lowered by the 
factor of 1.6 using a DC magnetron sputtered Ti/Al (35/115 nm) bi-layer metallization [5]. 
The specific contact resistances between the range of 1.0 × 10-5 Ω.cm2 to 1.0 × 10-8 Ω.cm2 
which are good enough for optical and electronics devices have been reported [6, 7]. 
          In this work, we report our initial investigation of the Ti/Al bi-layer contacts on the n-
type doped AlxInyGa1−x-yN grown on silicon (111) substrate using molecular beam epitaxy 
(MBE) technique. The electrical stability of the contacts at various annealing temperatures 
(400–700 °C) was investigated. 
 

2. Experimental Procedure 
 

            A commercial Al0.08In0.08Ga0.84N alloy grown on silicon substrate Si (111) was 
employed. The contact resistance was measured using the transmission line method (TLM). 
For metallization, the Al0.08In0.08Ga0.84N samples were first cleaned to remove native oxides 
which maybe presence in the semiconductor that can increase the contact resistance of 
ohmic contacts. To provide oxide free and defect free for device application the controlling 
of metal/semiconductor interface is very important. The native oxide was removed in the 
NH4OH:H2O=1:20 solution for 10 min, then rinsed with distilled water. Subsequently, the 
samples were dipped into HF: H2O=1:50 solution for 10 s then rinsed with distilled water. 
The cleaned samples were then chemically etched in boiling aqua regia of HCL: HNO3=3:1 
for 10 min to reduce the amount of oxygen (O) and carbon (C) contamination of the 
Al0.08In0.08Ga0.84N surface. Wafers were then blown dry with compressed air after cleaning 
and are ready for the next fabrication step. First, titanium (Ti) with 50 nm was RF-sputtered 
onto the Al0.08In0.08Ga0.84N through a metal mask, followed by the evaporation of 200 nm 
capping layer of Al. Fig. 1 shows the metal mask used to fabricate the transmission line 
method (TML) pads before and after metallization.  

 
 

Fig. 1: The metal mask used to fabricate the transmission line method (TML) pads a) before 
metallization, b) after metallization. 
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           The TLM pads were designed to be 2 mm (W, width) × 1 mm (d, length) in size and 
with spacing (l) between the pads were 0.3, 0.4, 0.6, 0.9, and 1.3 mm. The specific contact 
resistivity, ρc were determined from the plot of the measured resistance against the spacing 
between the TLM pads. The linear-square method was used to fit a straight line to the 
experimental data. The samples were annealed under flowing nitrogen gas environment in 
the furnace at 400, 500, 600, and 700 °C for 5 min. Similar heat treatments were carried out 
for additional annealing times of 10 and 20 min to investigate the thermal stability of the 
contacts. The nitrogen gas was purged at a mass flow rate of 5 L min-1. The changes in the 
surface morphology after the annealing treatment were examined using scanning electron 
microscopy (SEM).   
 

3. Results and Discussion 
 
3.1 Calculation of Specific Contact Resistivity (SCR) 

 
The total resistance RT between two points of a sample having a metallic conductor 

laying on a semiconductor to make an ohmic contact can be divided into three components. 
It is the resistance of the metallic conductor Rm, the contact resistances Rc and the 
semiconductor resistance Rs; therefore, the total resistance is given as 
 
                                                scmT RRRR  22                                                               (1) 

                     
The semiconductor resistance, Rs is determined by the sheet resistance, Rsh of the 
semiconductor layer. It does not include the resistance of the metal-semiconductor contact 
only, but it also includes a portion of the metal immediately above the metal-semiconductor 
interface. A part of the semiconductor below that interface, current crowding effect and any 
interfacial oxide or other layer that may be present between the metal and the semiconductor 
are also included. The specific contact resistivity ρc determines the use of the rectangular 
transmission line method (TLM) that has widely been used in the characterization of ohmic 
contacts to semiconductors. TLM consists of rectangular metal pads placed at different 
distances as shown in Fig. 2. The resistance Ri (Ri=RT) is measured between two contact 
pads with spacing li, and can be written as:  
 

  
c

tsk

c

ish
i W

lR

W

lR
R

2
                                                              (2) 

 

  c
c

ish
i R

W

lR
R 2                                                                (3) 

 
where li is the spacing between two pads, WC is the width of the contact pad, Rc is the 
resistance due to the contact, Rsh is sheet resistance of the semiconductor layer outside the 
contact region, Rsk is the sheet resistance of the layer directly under the contact, and Lt is the 
transfer length.  
            Fig. 2 shows Ri as a function of li which produces a straight line with the slope 
Rsh/WC, and 2RC is yielded from the intercept at y-axis. The intercept at x-axis gives Lx: 
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where Lx≈2Lt with the assumption that Rsh=Rsk. On the other hand, the assumption of an 
electrically long contact d >>Lt enabled the relationship ρc=RshLt

2 to be invoked which 
leads to  ρc=RcWLt [8]. 
 

 
 
Fig. 2: (a) Rectangular TLM pattern and (b) plot showing the variation of the resistance with respect 

to the gap distance. 
 
Fig. 3 shows the I-V characteristics for Ti/Al contacts of Al0.08In0.08Ga0.84N layer at 

thermal annealing temperature from (400-700 °C) which revealed that the sample with 
thermal treatment of 400 °C under annealing durations of 10 minutes (cumulated 15 minutes) 
has Ohmic behavior. This particular annealing temperature was considered the optimum 
annealing temperature for AlInGaN-based ohmic devices which produced the lowest SCR. 
Lowering the contact resistance and improved linearity may come from more intimate 
contact of metal with semiconductor or any new phases having lower work function. 
Intimate contact leads to more current flow across the interface by breaking up some of 
interfacial contamination between metal and semiconductor [8].  

The specific contact resistivities of Ti/Al contact on Al0.08In0.08Ga0.84N epilayer are 
summarized in Table 1. From Fig. 3 and Table 1, the contact specific resistivity ρc reaches a 
minimum of 0.054 Ω.cm2 when the annealing temperature is 400 °C with cumulated time of 
15 minutes. Increasing the annealing time degraded the contacts due to the formation of an 
insulating AlxOy layer on the surface of the Al for higher annealing time [4, 9]. As a result, 
measurements of the contact resistance at the Al0.08In0.08Ga0.84N interface became more 
difficult and caused the contact resistance to be artificially high. 
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Fig. 3: I-V characteristics for Ti/Al contacts of Al0.08In0.08Ga0.84N layer at thermal annealing 
temperature from (400-700 °C) for 15 minutes. 

 
Table 1: Specific contact resistivities of the Ti/Al contact on the Al0.08In0.08Ga0.84N epilayer. 

 

 
            The lowest specific contact resistivity of 0.054 Ω.cm2 is due to the formation of 
either TiN or AlN, as follows: First, the chemical reaction at the Ti/ Al0.08In0.08Ga0.84N 
interface would form a thin layer of TiN which have a low work function of 3.74 eV [4], 
and hence satisfying the condition to form an ohmic contact to n- Al0.08In0.08Ga0.84N. Second, 
Al which is a low work function metal of 4.28 eV, diffuse through Ti during annealing and 
reaches the n- Al0.08In0.08Ga0.84N surface. The Al then reacts with the surface of the 
AlInGaN to form a thin AlN layer at the interface. This processes results in N vacancies, 
which yields heavily doped interface, resulting in a tunneling current responsible for the 
ohmic contact formation. However, with increasing annealing temperatures from 500 to 
700 °C the specific contact resistivity increased, this is due to the degradation of the 
interface between the contact and sample surface. In addition, at high annealing temperature, 
islands are formed on the surface from the metals themselves which created the much 
rougher surfaces that can be seen in Fig. 4 which shows the SEM imaging for Ti/Al contacts 
of Al0.08In0.08Ga0.84N layer at thermal annealing temperature from (400-700 °C) for 10 
minutes (cumulated 15 minutes). The segregation of the metal contact can be seen with 
increasing thermally treatment which leads to high SCR and non ohmic behavior. 

 
Annealing Temperature 

Specific Contact Resistivity 
(Ωcm2) 

Time/(cumulated time) 
5 min 10 min/(15 min) 20 min/(35 min) 

400 C 0.644 0.054 5.85 
500 C 1.96 1.88 - 
600 C 4.7 2.82 - 
700 C 6.08 5.57 - 
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